Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(12): e2307565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946670

RESUMO

Liquid crystal elastomers (LCEs) with promising applications in the field of actuators and soft robotics are reported. However, most of them are activated by external heating or light illumination. The examples of electroactive LCEs are still limited; moreover, they are monofunctional with one type of deformation (bending or contraction). Here, the study reports on trilayer electroactive LCE (eLCE) by intimate combination of LCE and ionic electroactive polymer device (i-EAD). This eLCE is bi-functional and can perform either bending or contractile deformations by the control of the low-voltage stimulation. By applying a voltage of ±2 V at 0.1 Hz, the redox behavior and associated ionic motion provide a bending strain difference of 0.80%. Besides, by applying a voltage of ±6 V at 10 Hz, the ionic current-induced Joule heating triggers the muscle-like linear contraction with 20% strain for eLCE without load. With load, eLCE can lift a weight of 270 times of eLCE-actuator weight, while keeping 20% strain and affording 5.38 kJ·m-3 work capacity. This approach of combining two smart polymer technologies (LCE and i-EAD) in a single device is promising for the development of smart materials with multiple degrees of freedom in soft robotics, electronic devices, and sensors.

2.
ACS Appl Mater Interfaces ; 15(23): 28288-28299, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276196

RESUMO

The low power consumption of electrochromism makes it widely used in actively shaded windows and mirrors, while flexible versions are attractive for use in wearable devices. Initial demonstration of stretchable electrochromic elements promises good conformability to complex surfaces. Here, fully integrated intrinsically stretchable electrochromic devices are demonstrated as single elements and 3 × 3 displays. Conductive and electrochromic ionic liquid-doped poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is combined with poly(vinyl alcohol)-based electrolyte to form complete cells. A transmission change of 15% is demonstrated, along with a reflectance change of 25% for opaque reflective devices, with <7 s switching time, even under 30% strain. Stability under both electrochemical and mechanical strain cycling is demonstrated. A passive matrix display exhibits addressability and low cross-talk under strain. Comparable optical performance to flexible electrochromics and higher deformability provide attractive qualities for use in wearable, biometric monitoring, and robotic skin devices.

3.
RSC Adv ; 13(10): 6656-6667, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36860526

RESUMO

The growing demand for flexible, stretchable, and wearable devices has boosted the development of ionogels used as polymer electrolytes. Developing healable ionogels based on vitrimer chemistry is a promising approach to improve their lifetimes as these materials are usually subjected to repeated deformation during functioning and are susceptible to damage. In this work, we reported in the first place the preparation of polythioether vitrimer networks based on the not extensively studied associative S-transalkylation exchange reaction using thiol-ene Michael addition. Thanks to the exchange reaction of sulfonium salts with thioether nucleophiles, these materials demonstrated vitrimer properties such as healing and stress relaxation. The fabrication of dynamic polythioether ionogels was then demonstrated by loading 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIM triflate) within the polymer network. The resulting ionogels exhibited Young's modulus of 0.9 MPa and ionic conductivities in the order of 10-4 S cm-1 at room temperature. It has been found that adding ionic liquids (ILs) changes the dynamic properties of the systems, most likely due to a dilution effect of the dynamic functions by the IL but also due to a screening effect of the alkyl sulfonium OBrs-couple by the ions of the IL itself. To the best of our knowledge, these are the first vitrimer ionogels based on an S-transalkylation exchange reaction. While the addition of ILs resulted in less efficient dynamic healing at a given temperature, these ionogels can provide materials with more dimensional stability at application temperatures and can potentially pave the way for the development of tunable dynamic ionogels for flexible electronics with a longer lifespan.

4.
ACS Appl Polym Mater ; 5(1): 529-541, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36686061

RESUMO

The growing demand for all-solid flexible, stretchable, and wearable devices has boosted the need for liquid-free and stretchable ionoelastomers. These ionic conducting materials are subjected to repeated deformations during functioning, making them susceptible to damage. Thus, imparting cross-linked materials with healing ability seems particularly promising to improve their durability. Here, a polymeric ionic liquid (PIL) bearing allyl functional groups was synthesized based on the quaternization of N-allylimidazole with a copolymer rubber of poly(epichlorohydrin) and poly(ethylene oxide) (PEO). The resulting PIL was then cross-linked with dynamic boronic ester cross-linkers 2,2'-(1,4-Phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane] (BDB) through thiol-ene "click" photoaddition. PEO dangling chains were additionally introduced for acting as free volume enhancers. The properties of the resulting all-solid PIL networks were investigated by tuning dynamic cross-linkers and dangling chain contents. Adjusting the cross-linker and dangling chain quantities yielded soft (0.2 MPa), stretchable (300%), and highly conducting ionoelastomers (1.6 × 10-5 S·cm-1 at 30 °C). The associative exchange reaction between BDB endowed these materials with vitrimer properties such as healing and recyclability. The recycled materials were able to retain their original mechanical properties and ionic conductivity. These healable PIL networks display a great potential for applications requiring solid electrolytes with high ionic conductivity, healing ability, and reprocessability.

5.
Gels ; 8(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735725

RESUMO

Ionogels are solid polymer gel networks loaded with ionic liquid (IL) percolating throughout each other, giving rise to ionically conducting solid electrolytes. They combine the mechanical properties of polymer networks with the ionic conductivity, non-volatility, and non-flammability of ILs. In the frame of their applications in electrochemical-based flexible electronics, ionogels are usually subjected to repeated deformation, making them susceptible to damage. It appears critical to devise a simple and effective strategy to improve their durability and lifespan by imparting them with healing ability through vitrimer chemistry. In this work, we report the original in situ synthesis of polythioether (PTE)-based vitrimer ionogels using fast photopolymerization through thiol-acrylate Michael addition. PTE-based vitrimer was prepared with a constant amount of the trithiol crosslinker and varied proportions of static dithiol spacers and dynamic chain extender BDB containing dynamic exchangeable boronic ester groups. The dynamic ionogels were prepared using 50 wt% of either 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide or 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, both of which were selected for their high ionic conductivity. They are completely amorphous (Tg below -30 °C), suggesting they can be used at low temperatures. They are stretchable with an elongation at break around 60%, soft with Young's modulus between 0.4 and 0.6 MPa, and they have high ionic conductivities for solid state electrolytes in the order of 10-4 S·cm-1 at room temperature. They display dynamic properties typical of the vitrimer network, such as stress relaxation and healing, retained despite the large quantity of IL. The design concept illustrated in this work further enlarges the library of vitrimer ionogels and could potentially open a new path for the development of more sustainable, flexible electrochemical-based electronics with extended service life through repair or reprocessing.

6.
Science ; 376(6592): 502-507, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482868

RESUMO

The human somatosensory network relies on ionic currents to sense, transmit, and process tactile information. We investigate hydrogels that similarly transduce pressure into ionic currents, forming a piezoionic skin. As in rapid- and slow-adapting mechanoreceptors, piezoionic currents can vary widely in duration, from milliseconds to hundreds of seconds. These currents are shown to elicit direct neuromodulation and muscle excitation, suggesting a path toward bionic sensory interfaces. The signal magnitude and duration depend on cationic and anionic mobility differences. Patterned hydrogel films with gradients of fixed charge provide voltage offsets akin to cell potentials. The combined effects enable the creation of self-powered and ultrasoft piezoionic mechanoreceptors that generate a charge density four to six orders of magnitude higher than those of triboelectric and piezoelectric devices.


Assuntos
Hidrogéis , Mecanorreceptores , Humanos , Fenômenos Mecânicos , Pele , Tato/fisiologia
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110495, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228898

RESUMO

The fabrication, via a two steps approach, of a novel bicontinuous Double Network (BCDN) material is reported. We first use a bicontinuous emulsion as template to obtain a poly(butyl acrylate) (PBA) and poly(acrylic acid) (PAA) bicontinuous amphiphilic material. The material is then swollen with the precursor of a second hydrophilic polymer (PNIPAM, poly(N-isopropylacrylamide)). After polymerization of these precursors, the two responsive polymers, PNIPAM and PAA, form a double-network within a bicontinuous templated material, i.e. a bicontinuous double network (BCDN) material. The advantages of using such unique and complex double network architecture are manifold. PBA increases the mechanical properties of the hydrogel all together with the hydrophilic double network that also decouples the pH and temperature responsiveness. Among different possible applications, we tested this responsive hydrogels for its biomedical application. It can be used as pH and temperature sensitive devices for on-demand drug delivery. In addition, the release of a drug confined in the amphiphilic bicontinuous structure follows different kinetics profiles, depending on pH and temperature. This last result indicates that it is possible to control and regulate the release of an encapsulated drug according to the fluctuations of physiological conditions.


Assuntos
Portadores de Fármacos/química , Emulsões/química , Polímeros/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Cinética , Temperatura
8.
Materials (Basel) ; 13(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968612

RESUMO

Combining ink-jet printing and one of the most stable electroactive materials, PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), is envisaged to pave the way for the mass production of soft electroactive materials. Despite its being a well-known electroactive material, widespread application of PEDOT:PSS also requires good understanding of its response. However, agreement on the interpretation of the material's activities, notably regarding actuation, is not unanimous. Our goal in this work is to study the behavior of trilayers with PEDOT:PSS electrodes printed on either side of a semi-interpenetrated polymer network membrane in propylene carbonate solutions of three different electrolytes, and to compare their electroactive, actuation, and energy storage behavior. The balance of apparent faradaic and non-faradaic processes in each case is discussed. The results show that the primarily cation-dominated response of the trilayers in the three electrolytes is actually remarkably different, with some rather uncommon outcomes. The different balance of the apparent charging mechanisms makes it possible to clearly select one electrolyte for potential actuation and another for energy storage application scenarios.

9.
ACS Appl Mater Interfaces ; 10(25): 21601-21611, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856596

RESUMO

An ionic conducting membrane is an essential part in various electrochemical devices including ionic actuators. To miniaturize these devices, micropatterns of ionic conducting membrane are desired. Here, we present a novel type of ionogel that can be patterned using standard photolithography and soft imprinting lithography. The ionogel is prepared in situ by UV-initiated free-radical polymerization of thiol acrylate precursors in the presence of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resultant ionogel is very flexible with a low Young's modulus (as low as 0.23 MPa) and shows a very high ionic conductivity (up to 2.4 × 10-3 S/cm with 75 wt % ionic liquid incorporated) and has a reactive surface due to the excess thiol groups. Micropatterns of ionogel are obtained by using the thiol acrylate ionogel solution as an ionic conducting photoresist with standard photolithography. Water, a solvent immiscible with ionic liquid, is used as the photoresist developer to avoid complete removal of ionic liquid from thin micropatterns of the ionogel. By taking advantage of the reactive surface of ionogels and the photopatternability, ionogels with complex three-dimensional microstructure are developed. The surface of the ionogels can also be easily patterned using UV-assisted soft imprinting lithography. This new type of ionogels may open up for building high-performance flexible electrochemical microdevices.

10.
ACS Appl Mater Interfaces ; 9(14): 12706-12718, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28304154

RESUMO

We capitalized herein the inherent tortuosity of bicontinuous microemulsion to conceive nanostructured drug-delivery devices. First, we show that it is possible to synthesize bicontinuous materials with continuous hydrophilic domains of the poly(N-isopropylacrylamide) (PNIPAM) network entangled with continuous hydrophobic polymer domains, with dual-phase continuity being imposed by the bicontinuous microemulsions used as a soft template. Particular attention is paid to the microemulsion formulations using a surfmer to preserve the one-to-one replication of the bicontinuous nanostructure after polymerization. These materials keep a volume phase transition with temperature that allows considering them as drug carriers for controlled release. PNIPAM, which plays the role of the active ingredient reservoir, is confined in the bicontinuous structure. As expected, the PNIPAM enclosure limits the surface area in contact with the releasing aqueous solution and thus slows down the desorption of aspirin, which is used as a model drug. The hydrophobic polymers play the role of in situ-created transport barriers without hindering it as all the loaded aspirin in this bicontinuous structure still remains available.

11.
Langmuir ; 32(39): 10104-10112, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610481

RESUMO

The nanostructure of a microemulsion can be strongly affected by the liquid-to-solid transition during polymerization. Here, we examined the evolution of nanostructures of different ternary mixtures, including two microemulsions and a single lamellar phase that upon polymerization are quantitatively studied by SAXS/WAXS and DSC experiments systematically performed before and after the polymerization of both aqueous and organic phases. Samples are mixtures of the poly(2-acrylamido-2-methylpropanesulfonic acid) network as the aqueous phase and poly(hexyl methacrylate) as the organic phase stabilized by Brij35 surfactant. Upon polymerization, the surfactant is excluded from the water/oil interface and crystallizes, strongly changing the nanostructure of samples where it is the main component. In samples where the aqueous phase is the main component, only a few changes in structure are observed upon polymerization. This study demonstrates quantitatively the possibility to preserve nanostructures during polymerization, thus inducing a templating effect.

12.
ACS Appl Mater Interfaces ; 8(3): 1559-64, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26709595

RESUMO

Recent progress in the field of microsystems on flexible substrates raises the need for alternatives to the stiffness of classical actuation technologies. This paper reports a top-down process to microfabricate soft conducting polymer actuators on substrates on which they ultimately operate. The bending microactuators were fabricated by sequentially stacking layers using a layer polymerization by layer polymerization of conducting polymer electrodes and a solid polymer electrolyte. Standalone microbeams thinner than 10 µm were fabricated on SU-8 substrates associated with a bottom gold electrical contact. The operation of microactuators was demonstrated in air and at low voltage (±4 V).


Assuntos
Microtecnologia/métodos , Polímeros/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Polietilenoglicóis/química , Polimerização , Polímeros/química , Silício/química
13.
Nat Commun ; 6: 7258, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028354

RESUMO

Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g(-1)) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m(-1)) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance.

14.
Adv Mater ; 27(30): 4418-4422, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099951

RESUMO

A general synthetic strategy for multifunctional actuators is presented, by confining desired functions in separate domains of interpenetrating polymer network materials. Specifically, complementary ionic actuator and shape-memory functions are demonstrated by simultaneous, orthogonal reaction pathways. Synergistic effects also allow dynamic programming and two-way linear shape-memory actuation.

15.
J Mater Chem B ; 3(20): 4249-4258, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262302

RESUMO

Electroactive, elastomeric, microfiber mats that show controllable pore size variation upon electrochemical stimulation are produced from semi-interpenetrating polymer networks (s-IPNs). This type of porous, elastomeric scaffolds that are mechanically dynamic under electrochemical stimuli could find new applications in stretchable electronics, (bio)filtration, soft robotics and stimulation of biological cells. These microfiber mats are prepared in two simple steps. Firstly, a mixture of high molecular weight nitrile butadiene rubber (NBR) and cross-linking agent, poly(ethylene glycol)dimethylacrylate are electrospun with in situ cross-linking. Secondly, a conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is embedded into the electrospun fibres by oxidative chemical polymerization of EDOT-swollen microfiber mats. This two-step process affords robust, highly flexible and conductive s-IPN microfiber mats. The microfiber mat undergoes a controllable pore size variation upon applying an electrochemical stimulus in the form of a reduction-oxidation cycle to the mats in an electrolyte. The maximum average pore size variation, measured in situ using confocal microscopy, is 25%, achieved in 1 M lithium bis-trifluoromethanesulfonimide (LiTFSI) in propylene carbonate (PC) for a potential step between +0.6 V and -0.5 V (vs. Ag wire). These mats also show pore size variation in a biologically compatible solution, phosphate buffered saline.

16.
Sci Rep ; 4: 6913, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372857

RESUMO

A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.


Assuntos
Órgãos Artificiais , Eletrólitos/química , Polímeros/química , Simulação de Ambiente Espacial/instrumentação , Radiação Cósmica , Planeta Terra , Técnicas Eletroquímicas , Eletrólitos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Meio Ambiente Extraterreno , Congelamento , Raios gama , Humanos , Teste de Materiais , Músculos/fisiologia , Polímeros/efeitos da radiação , Voo Espacial , Raios Ultravioleta , Raios X
17.
Chem Commun (Camb) ; 50(24): 3191-3, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24518924

RESUMO

Using polymeric ionic liquids and PEDOT as ion conducting separators and electrodes, respectively, an all-polymer-based organic electrochromic device (ECD) has been constructed. The advantages of such an ECD are: fast switching time (3 s), high coloration efficiency (390 cm(2) C(-1) at 620 nm), optical contrast up to ΔT = 22% and the possibility of working under vacuum.

18.
Chem Commun (Camb) ; 46(17): 2910-2, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20386819

RESUMO

We describe here a truly "one piece" electronic conducting polymer based linear actuator operating in the open air.


Assuntos
Polímeros/química , Materiais Biomiméticos/química , Eletrônica , Músculos/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...